© Fraunhofer THM/ Toni Lehmann vom THM Freiberg bestückt seinen Laue-Scanner mit Proben von Solarwafern.
© Fraunhofer THM/ Toni Lehmann vom THM Freiberg bestückt seinen Laue-Scanner mit Proben von Solarwafern.

Orientierungshilfe für Solarzellen

Preisgekrönte Forschung an multikristallinen Siliziumwafern

Auf der E-MRS-Tagung 2014 in Lille wurde Toni Lehmann vom Fraunhofer THM Freiberg mit dem ‘E-MRS Symposium W Graduate Student Award’ ausgezeichnet. Der Forscher konnte zeigen, dass bei bestimmten Gefügeeigenschaften multikristalliner Siliziumwafer nur 1% der Waferoberfläche so genannte Versetzungscluster beinhaltet. Bei multikristallinen Standardwafern beträgt der Flächenanteil mit diesen schädlichen Kristallfehlern mehr als 10%. Die Ergebnisse liefern wichtige Erkenntnisse, in welche Richtung sich der industrielle Herstellungsprozess für multikristalline Siliziumwafer entwickeln sollte. Mit dem optimierten Siliziummaterial lassen sich Solarzellen mit noch höheren Wirkungsgraden herstellen.

Die Gewinnung von Photovoltaikstrom erfolgt heutzutage überwiegend mit Siliziumsolarzellen. Basis der Solarzellen sind Siliziumscheiben – so genannte Wafer – die aus großen Siliziumkristallen gefertigt werden. Die Siliziumkristalle werden industriell nach dem Prinzip der gerichteten Erstarrung aus einer Siliziumschmelze hergestellt. Verfahrensbedingt kommt es dabei in den Kristallen zur Ausbildung einer multikristallinen Gefügestruktur mit unterschiedlich großen und verschieden orientierten Körnern. Außerdem entstehen im Silizium strukturelle Kristallfehler in Form so genannter Versetzungscluster. Die Versetzungscluster senken die Ladungsträgerlebensdauer innerhalb der einzelnen Kristallkörner herab und limitieren damit den Wirkungsgrad der aus den Wafern hergestellten Solarzellen. Bislang gab es aber keinen statistisch belegbaren Zusammenhang zwischen dem Auftreten der Versetzungscluster und den Gefügeeigenschaften der multikristallinen Wafer.

Am Fraunhofer THM in Freiberg untersuchte Herr Lehmann mit einem sogenannten Korndetektor die Korngrößen in industriell hergestellten multikristallinen Siliziumwafern. Ein von dem Forscher mitentwickeltes röntgenbasiertes Metrologiegerät, ein so genannter Laue–Scanner, erlaubte die Bestimmung der Kornorientierung im Kristallmaterial. Anschließend konnte Herr Lehmann durch einen optischen Photolumineszenz-Scanners die Versetzungscluster auf den Waferoberflächen detektieren und deren Auftreten eins zu eins mit der Kornorientierung korrelieren.

Im Ergebnis der systematischen Untersuchungen ergab sich ein eindeutiger Zusammenhang zwischen dem Auftreten spezifischer Kornorientierungen und dem Flächenanteil der Versetzungscluster auf einem Wafer. So treten die schädlichen Versetzungscluster bevorzugt in <111>- und <112>-orientierten Kristallkörnern auf, da hier besonders viele Gleitebenen aktiviert werden können. Jedoch spielt die Größe der Körner dabei keine Rolle. Wenn die genannten Orientierungen nicht vorkommen, weisen sowohl Wafer mit kleinen Korngrößen als auch Wafer mit größeren Körnern verhältnismäßig wenige Versetzungscluster auf.

‘Für diese herausragende wissenschaftliche Arbeit haben wir Herrn Lehmann vom Fraunhofer THM auf der E-MRS Frühjahrstagung, die 2800 Teilnehmer hatte, im Symposium W ‘Kristalle für Energieerzeugung, -wandlung und -speicherung‘ mit dem E-MRS Symposium W Graduate Student Award ausgezeichnet’, erläutert Prof. Jeff Derby von der Universität Minnesota, USA, der dieses Symposium gemeinsam mit Kollegen aus Japan und Deutschland organisierte.

GastautorIn: Fraunhofer IISB für oekonews.
Artikel Online geschaltet von: / Doris Holler /